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Abstract

The process of phase correction for “emission line spectra with high signal-to-noise ratios has re-
mained  an unresolved problem and critically defines the quality and reproducibility of the Fourier trans- ,
form emission spectra. ~aditional methods utilim  a low resolution phase spectrum and often produce

spectra that do not have reproducible line positions. A phase correction strategy has been developed
for and tested with infrared, visible, and UV emission line sources. A high re$solulion  (64-80 K point
intcrfcrogram)  phase spectrum provides the phase data. A discriminator is used to restrict the phase
data to those points that have sutlicicnt  signal-to-noise to obtain a reliable phase csthnatc,  and a smooth
phase function is obtained by fitting a polynomial to the phase data. Quantitative estimates of the phase
error as a function of apodkation  width, discriminator value, and order of polynomial used in the fitting
process arc presented.
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L Introduction

A speetrum can bc exactly reconstructed from an ideal, symmetric intcrfcrogram  by means of the
eosinc Fourier transform alone. In practice, sampled intcrfcrograms  arc never entirely symmetric,

and eomplctc  reconstruction requirm a eomplcx  I%uricr  transform. The required real spectrum is
recovcrcd  from the eomplcx spectrum either by applying a phase correction or by taking the modulus,
and il will be shown later that the first of these alternatives is prcfcrablc.

Asymrnctry  in the rccordcd intcrfcrogram  may arise from a combination of several effects. First,
neither the apodising  function (includin~  the truncation of the intcrfcrogram)  nor the signal intensity
arc neccs.sarily  symmetric about zero path ditTcrcncc.  Second, the eentrc  of the zero path fringe of a
symmetrically apodised intcrfcrogram  may not (and usually does not) coincide exactly with one of the
points at which the intcrferogram is sampled. Third, any dispersive effects will make the optical path
diffcrcncc  frequcney  dcpcndcnt  so that there is no WCII defined position of ?zro path diffcrcnee.  Such
dispersive cflccts maybe optical - small differences in the bcamsplittcr  and compensator thickness, for
example - or electrical - frequcney dcpcndcnt delays in the amplifying and filtering electronics. When
dispersion is present the brightest fringe, sometimes called the ‘grand maximum’, k taken as the ccntrc,
but the intcrfcrogram is not symmetric about this point.

The effect of an asymmetric apodising  function T(x) is to eonvolvc  the transformed speetrum  with
a eomplcx  instrument funclion  t(u),  where

t(u) = t,(o)+ ii.(u).

Sinec l“(z) is - at least in principle - under the control of the

(1)

operator, we start by taking it to bc
symmetric (i.e. ia (o) = O). The other two effects arc taken into account by writing the modulated part
of the intcrfcrogram  as

I(x) =
J

A(o) cos[27rc7(z  – c) -t ~~(u)]da (2)

where A(a)  is the sourec distribution, c is the offset of the sampling grid, and ~)(o)  is the dispersive
phase. If the Iattcr is the result of an refractive optical path mismatch 6 it takes the form l(u) =
27ro[n(a)  – 1]6, where n k the refractive index of the bcamsp]ittcr  material. In general onc assumes
that the functional form of () is not WCII known. The linear term 27ruc can bc incorporated with t) to
give

I(a!) =
J

A(o) cos[27rux -t ~(a)]du (3)

where 4(0) = 27ruc -1 ~)(u).

The eomplcx Fburicr  transform of this function is

s(a) = c-~@(”) A(u). (4)

~ rccovcr the true spectrum A(u) from the observed spectrum S(a),  wc need to dctcrrninc  4(o) cx-
pcrimcntally  and multiply through by C+ ‘@f”J:  this is the process known as phase correction. If the
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intcrfcromctcr  is 10 bc used at or near its limit as a signal handling dcvicc (i.e., to give results limited in

quality only by source or detector noise), the phase correction must be dctcrmincd  with a precision that
greatly cxcecds  its day-to-day reproducibility. Phase correction must therefore be done-separately for

each observed intcrfcrogram  (or co-added set) and must be deduced from the data contained within

the intcrfcrogram.  When the effects of asymmetric apodisation are considered, it will be seen that a
‘single-sided’ intcrfcrogram  is much more sensitive to errors in phase correction that is a ‘double-sided’

intcrfcrogram.

IL Rwsic approach to phase correction

o. Symmetric apodisation  function

The phase d(o) is always a slowly varying function of the wavcnumbcr  a, and the usual approach

is to dctcrminc  tan # from the ratio of the imaginary and real parts of the complex spectrum obtained

from a short scclion  of the intcrfcrogram truncated symmetrically about the rxmtrc.

Intensity and resolution criteria have also been analyscd by Brault [1] for both absorption and
crnission  spectra. This distinction has rclcvancc to the phase problem in two ways. The first is straight-

forward: in an absorption spectrum there is information at all frcqucncics, whereas in an emission spec-

trum there is information only at some frcqucncics, and that information can vary widely in quality. We
arc concerned here with a pure emission line spectrum - that is, onc where the energy is concentrated

entirely into the discrctc lines. In this case the output of the transform in the gaps bctwccn the lines
is incoherent white noise in both the real and imaginary parts, both parls  having the same root mean
square amplitude. The phase is undctcrmincd:  the mean value is arbitrary, and the RMS deviation

from that mean is +7r/{3  radians. Most of the spectral points contribute nothing to the phase data.

The phase is dctcrmincd only at each line, and then only to a precision set by the signal to noise ralio

for that line.

This problcm cannot bc ovcrcomc  by adding a weak continuous spectrum to the input. The photon

noise associated with the total energy involved (individual channel energy times the very large number

of channels) degrades the entire spectrum and is not acceptable. Using the modulus of the spectrum

(equivalent to ignoring phase corrcclion)  also degrades the signal to noise ratio.

In Ihc case of an emission spectrum relatively fcw spectral points carry useful phase information

and an additional decision is required: the choice of the intensity below which phase information is not
significant. The choice of resolution is also of much greater significance.

The aim is to achicvc  a phase correction such that residual errors of phase degrade the spectrum by

an amount small compared with the noise. In some cases this can require the phase to bc dctcrmincd

with an error of the order of magnitude (in radians) of the reciprocal of the signal to noise ratio in the

computed spectrum -e.g. if the latter is 1000, the phase error should be less than +1 mrad.
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Wc need to consider first the errors b(m) in the phase found from the truncated section and second

the effect on the final spectrum of phase correction with the function 4(o)+ 6(o). Brault  [1] has shown
that for an emission Iinc at 00, the phase error is given by

where 4’(o) = 8@(u) /80 is the gradient of the phase at ao. c5(a) is proportional to the rate of change
of the phase spectrum with frequency, if the truncation is shorl  enough for the width of the instrument
function to excccd  that of the emission line. This phase error is equal to the phase change across the
width of the instrument function, so that the phase is artificially llattcncd  within a region of significant
width. Evidently @’ can bc minimized by shifting the origin to make the linear phase term equal to zfiro

in the spectral region of interest, regardless of whether this linear term comes from the grid displace-
ment  c or from a linear term in the dispersive component. This is equivalent to choosing the origin to
bc the point of sm(ionafyphase  (to first order).

‘Ib get good phase data from emission spectra requires therefore that some discriminator (or highly

nonlinear weighting function) be used to eliminate the sea of phase noise lying bctwccn the lines.

The resulting phase data is a set of point values at arbitrary values of u, and some smoothing process
is required to link these to form an analytic function to be used for phase correction. The choice of
function is not critical; the optimum in terms of minimizing the number of parameters would be onc
that rcflcclcd  the wave number dcpcndancc  of the dispersive character of the components. In practice
wc have used a polynomial, as discussed in Section 111.

The second problcm for emission spectra is more subtle and more of a nuisance. It concerns the
Icngth  of the symmetrically truncated central section of the intcrfcrogram  used to dctcrminc the phase
function. As the length of this section decrcascs,  the instrument profile in the Fourier transform broad-
ens. This is not of great significance in absorption spectra where the rate of change of intensity with

frequency is small. In emission spectra the intensity variation bctwccn lines may bc as great as 10000:1.
Under these conditions the wing of an instrumentally broadened line profile may overwhelm the peak
of a weak line at another frequency. The phase information from the weak line will thus bc replaced by
data for a line at a ditkrcnt  frequency, Examples are given in Section 3 that illustrate the necessity of
choosing the instrumental width in the kwv resolution spectrum to bc very much smaller than the typical

interval bctwccn  strong lines.

This need for a narrow instrumental width - that is for a fairly high low resolution apodisation -
means that the functions of phase dctcrrnination  and phase smoothing must bc separate, A broad
instrument function cannot bc used to smooth the phase data of an emission line spectrum.

b, Asymmetric apoclisation  function

The two cxtrcmcs of apodisation arc nearly symmetric truncation (equal-sided intcrfcrograms)
and almost completely asymmetric truncation (unequal-sided intcrfcrograms  or, in the limit; one-sided
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interfcrograms).  The advantage of the Iattcr is that it offers the maximum resolution for a given ob-
servation  time, but, as shown below, it imposes more scvcrc restrictions on the accuracy to which d(o)

must bc dctcrmincd.

~uncation  by an asymmetric function T(x) leads to a complex instrument func[ion  with a large
imaginary part, which is necessarily antisymmctric.  Suppose the intcrfcrogram  is observed from –1 to
+1. (1 < 1.), and the portion from –1 to+/ is weighted onc half with rcspccl  10 that from -H to +L as

illustrated in Figure 1. Then the real part of the instrument function is the well-known sine function

t,(c7) = Lsinc(27ruI/)  = 1.
si71(27raL)

27ruI)

and lhc imaginary part is the antisymmctric  cosine function

t.(u) = Lcosinc(27rc7L) - /cosinc(27ru/);

where in, analogy with the sine function,

cosinc(27ruI.)  = cos(27ruIJ)/(27rc7  J.).

If the intcrfcrogram  is nearly one-sided with 1<<1. then,

ta(a)  -+ I,cosinc(27ruI.)  – & = cos(2m7L) – 1
21ru “

(6)

(7)

(8)

(9)

Figure 2 illustrates symmclricand  antisymmctriccomponcnts  of the apodkation function for an uncqual-
sidcd  intcrfcrogram,  and the complex instrument function in both the spatial and frequency domains.

Multiplication of the intcrfcrogram  by the asymmetric truncation function T(z) leads to a convolution
of the spectrum with this complex instrument function

T(z)l(z) = [ t , ( u ) + -  it.(u)] * S(a)c (lo)

If S(o) is wholly real (either bccausc  l(z) is completely symmetric or bccausc the phase correction is

perfect), the real part of the convolution t,(u) * S(a) gives the required spectrum and the imaginary
part can simply bc discarded. The problcm  arises when the spectrum is imperfectly phase corrcctcd,

For a small residual phase error 6(u),

S(u) = A(a)c-i6(”J = A(a) cos 6 – iA(u) sin 6 N A(a) – i6A(a). (11)

The ma] part of the convolut ion now contains two parts: the real parl of the spectrum convolved with the
symmetric part of the instrument function, and a second term which is the convolution of the imagina~
part of the spectrum with the antisymmctric  instrumental profile ta (a):

lik[S(a) * t(o)]  = A(a) * t,(o)+ [6A(o)]* id(a) (12)
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where td(a) is not small compared with i~(o). If 6 is small and cffcctivcly  constant over lhc instrument
profile, it can bc taken out of the convolution to give

(13)

This asymmetric instrument function displaces and distorts all observed lines by an amount propor-
tional 10 the local phase error. For 1 w O and an unresolved line (sine profile) the wavcnumbcr error
is 0.56 times the rcsohrtion  clcmcnt  and Brault has evaluated an equivalent shift for Lorcntzian  and

Gaussian line profiles of 0.506 and 0.486 .rcspcctivcly.

In the intcrmcdiatc  case, O <1< L, the relative amplitude of the antisymmctric  part of the instru-
ment function is of course reduced, but not in proportion to the doubkidedmw. For a 4:1 asymmetry

(/ = L/4) the reduction in wavcnumbcr  shift for a given phase error is only 8%, In a double-sided in-

tcrfcrogram  the antisymmctric  part of the intcrfcrogram  approaches ?cro, and the sensitivity to phase

error is minimal. Phase correction in the equal-sided case gives, in effect, a {2 gain in signal to noise
ratio. Thus, the proccdurc  for determining the phase outlined at the beginning of this section uses a
symmetrically truncated central section of the intcrfcrogram  to avoid distortion from an asymmetric
instrument function.

111. llxpcrimcnttd  data

A phase correction stratcgj  derived from the previous paragraphs was dcvclopcd for and tested
with infrared, visible, and UV crnission  Iinc sources. The spectra considered here arc dominantly those
of the Iron-Argon or Iron-Neon hollow cathode and were taken to underpin a rcobscrvation of the Fe
1 spectrum. A brief summary of the Fourier transform spcctromctcr, the light source, and the observed
spectra is thcrcforc  relevant.

The ITS at the National Solar Observatory - ~cson,  AL. is a onc mctrc  Conncs type Michelson
intcrfcromctcr  with complementary inputs and outputs.

~pical  parameters for an observing run at NSO were: a onc million point intcrfcrogram  at a res-
olution  of 800000 (i.e., 4:1 asymmetry) consisting of 10 to 20 co-added scans in a onc to two hour
observation time. The spectral ranges were restricted by optical and electrical filters to about 10000
cm- 1 in an overall covcragc from 1850 to 35000 cm-1 , Observations were principally in first order
alias, though occasionally second or third order aliases were used: in all cases Ihc highest frequency

observed was usually at about 0.9 times the frequency of the alias edge. Several diflcrcnt  types of diode
detectors (Si, UV Si, InSb) were used, as appropriate. Electrical filtering was by analoguc means (the
phase shifts of these filters were the dominant contributor to the overall phase error [1]) and the data

was digitally record cd.

The light sources were high current hollow cathode lamps, usually run in Neon or Argon. ~pically
filling pressures were 4 Tbrr (Neon) and 3 ‘Ibrr (Argon), and the current was usually bctwccn 0.75
and onc ampere. The majority of the observations were made with an uncoolcd  pure iron cathode.
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Continuum radiation from the red-hot cathode was excluded by careful focusing and by using a tilted
rear window to the lamp to avoid unwanted reflections. Such radiation can easily dominate the photon
noise in the red and infrared spcclral regions which sets the fundamental limit on the quality of the
observations.

II1o. Spectra and wrwenumbcr  calibration

The resulting spectra contain a large number of lines with widths corresponding to a Doppler tcm-
pcraturc around 2450 K (a line with FWHM of 0.100 cm-l at 22000 cm-l ). The resolution step was
chosen to give about four points in this Iinc width. ‘Ijpical  low resolution amplitude and phase spectra
arc given in Figure 3. The phase spectrum is WCII dcflncd  in the regions where the signal to noise ratio
is larg~ however, as the signal to noise ratio dccrcascs, the phase spectrum bccomcs  increasingly noisy.
Initially the spectra were phase corrected using a low resolution phase spectrum dctcrmincd  from a
transform of 4096 points ccntred about the central fringe of the intcrfcrogram. Overlapping spectra
were taken to obtain continuous high resolution covcragc  of the spectrum with high signal to noise
ratio. After the line positions were measured, wavcnumbcrs  of overlapping regimes of ditTcrcnt  rum
were compared.

In most cases pairs of ITS spectra did not give reproducible line wavcnumbcrs, as the wavcnumbcr
difTcrcnccs in Figure 4 demonstrate: the scatter of the diflcrences  at either cnd of the wavcnumbcr
region suggests that there is no dispersion bctwccn  the spectra, but the systematic wavcnumbcr error
for lines bctwccn  20000 and 24000 cm-1 suggests that the line shapes in onc of the spectra are distorted
sumciently  to produce the wavcnumbcr  shifts observed. Line shape distortion can occur in asymmetric
inlcrfcrograms  if the phase is corrcctcd  improperly. A comparison with Figure 3 indicates that the lines
in this spectral region arc relatively weak compared 10 lines below 20000 and above 24000 cm-1 .

IVa. IIigh rmolution  phase determination

The traditional method for determining the phase uscs  a transform of 4096 points of the intcr-
fcrogram ccntcrcd about the grand maximum to generate a low resolution phase with which the high
resolution complex spectrum can bc rotated into a real, phase corrected, spectrum. In such a pro-
CCSS, the apodisation  and Ihc phase smoothing arc accomplished simuhancously.  Presuming that the
wavcnumbcr difference.. prcscntcd  in Figure 3 rcsuhcd  from inadequate phase correction, an alternate
method was suggested in which the phase apodisation and phase smoothing were performed separately.
The low resolution phase correction was performed as follows:

● the intcrfcrogram was apod iscd to obtain a two-sided intcrfcrogram  (4192-81920 points in length)

● the phase spectrum was dctcrmincd  from the transform for all data points cxcccding  a spcciticd

discriminator. This insures that the phase will bc dclcrmincd  only from points with sufllcicnt  am-
plitude to yield a reliable phase cslimatc.

Q the phase spectrum was smoothed by fitting the spectrum to a polynomial with 3-8 terms.
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● the high resolution spectrum was phase corrcckd  wilh the polynomial rcprcscnlation  of the phase.

Pairs of spectra were then eomparcd  to check the reproducibility of wavcnumbcrs  in overlapping
regions.

N%. ApodizMion

While the phase of a spcclrum is assumed to bc a slowly varying function of wavcnumbcr, the

rcsohrtion  width used in the phase determination averages a certain number of data points to obtain
the phase estimate. In a case such as the spectrum presented in Figure 3a, a low resolution phase

estimate allows the phase of the strong lines below 20000 cm -1 and above 24000 cm-l to propagate

into the intermediate region where the phase is significantly difTcrcnt but there arc no strong lines, In
all cases a cosine bell apodisation  function given by the expression

[ 1
K

T(z) = ;(1 + Cos(o)  _, (14)

was used. Figure 5 presents phase dilTcrenccs  bctwccn  a phase estimate using 81920 points and lower

resolution runs with 40960, 204S0, and 4096 samples. The phase diflcrcnccs  arc minimal for the high
resolution phase determination and accurate estimation of the phase in the region bctwccn  20000 and

24000 cm- 1 (where the signal to noise ratio k considerably smaller than clscwhcrc)  requires more than
40000 points. The phase error as a function of apodisation  width k displayed in Figure 6, which indicates
that phase errors at the milliradian  ICVCI  require an apodisation  width of 40000 points or more.

IVc, Discriminator

The goal of phase correction is to produce a spectrum in which the error in line position determina-

tion is dominated by noise rather than computational arlifacts.  For a nearly symmetric intcrfcrogram
(/w O) the condition that

buPha8e < 6gnoi8e

&#J < (S/N)-],

the inverse of the signal to noise ratio Consequently to fully utilize

corresponds to a phase error

ic. a phase error smaller than
a spectrum with a signal to noise ratio of 103, the phase error must bc ICSS than 10-3 radians or 1
milliradian.  This condition may bc inverted to specify the signal to noise ratio necessary to obtain a

reliable estimate of the phase. Increasing the discriminator reduces the number of lines used in the
phase determination but improves the quality of the phase estimate and hcncc reduces the phase error.
In the case of the R-Nc  spectrum changing the discriminator from an intensity of 0.31”,aT to O. OO1lm.x
incrcascs  the number of lines by nearly a factor of 10, and incrcascs the phase error by a faclor of 10 as
WCII (Tdb]c  1 and Figure 7a).
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IVd. Smoothing by polynomial fitting

Once an accurate estimation of the phase has been obtained it is necessary to smooth this function

to produce a reasonable phase spcclrum  for all wavcnumbcrs  within the spectral window. The usc of a
least square fit to a polynomial has no practical justification other than convcnicnce,  and the accuracy of
the fit relative to the order of the polynomial will reflect the complexity of the phase spectrum. Within
the limits of the data a phase fit with a fcw terms sufhccs to dcscribc  the data, and the differences
bclwccn the curves for three and eight terms arc virtually indistinguishable. Outside the data window
the fits diverge rapidly, especially for higher order polynomials. Quantitative phase error can only bc
dctcrmincd  by calculating the phase error for various order polynomials: as demonstrated in ‘Ihble  2
and Figure 7b, accurate fitting of the phase requires more than 4 terms, but more than seven terms
does not improve the phase fit,

IVc. Results and improved wavenumber  calibration

The phase difference bctwccn  the low resolution phase spcc[rum and the least-square phase spcc-
lrum (Figure 8) matches the wavcnumbcr  diffcrcnccs  given in Figure 4, confirming the suspicion that

the wavenumbcr differences bctwccn  the two IW3 spectra arose from a phase error in onc of the spec-
tra. The relative scale bctwccn  the two graphs k consistent with the expression

(15)

for lines with widths on the order of 0,1 cm-l (100 n~illiKayscr).  Phase correction with the least-square
phase spcclrum  leads to an improved calibration of the two ITS spccma,  as illustrated in Figure 9: the
wavcnumbcr  diflcrcnccs  cluster in two groups indicating some residual phase discrepancy bctwccn the
two data sets; however at this Icvcl the error has an insignificant effect for spectra with signal to noise
ratios below 104.

V lnterrml  Culikition:  the Ritz lkst

The above discussion focuses on the analysis of several overlapping spectra and through the pro-
cess of intercomparison  it was possible to dctcrminc  that at least onc of the spectra produced incon-
sistent  results. A tmt that could compare various lines within a single spectrum would allow for direct
determination of the phase error without requiring comparison with other similar spectra. The Ritz
combination principle can bc applied to a single spectrum to dctcrminc energy lCVCIS, and by consid-
ering several transitions that connccl the same upper and lower states through diflcrcnt  intcrmcdiatc
states it is possible to compare lines from different spectral regions within onc spectrum. If the phase
error is negligible then the diflcrcncc  bctwccn the two diflcrcnt transition pathcs (A+B)  and (C+D)
should not bc a function of onc of the intcrmcdiatc  transition frcqucncics  (Iinc D for example in Figure
10), In contrast, the dcpcndancc  of the diflcrcncc  on line frequency ilhrstratcd  in Figure 11, is direct
cvidcncc  that there is some distortion of the line positions in the spectrum. Hindsight, and the relative

10



similarity of the wavcnumbcr  diffcrcnccs and phase error displayed in Figures 4 and 8, suggest that  the
line position distortion results directly from the phase error crcamd by the usc of a low rmolution  phase
corrcc[ion method.

Traditionally, the Ritz test has been used to verify the consistency of energy ICVC1  assignments in
molecular and atomic spectroscopy. In the case of an analyzed spcclrum (such as 1% I), the Ritz test
can, instead, bc used to verify the internal consistency of the data.

VI, Conclusions

The process of phase correcting Fourier transform emission spectra has been reexamined and a
ncw method is proposed and evaluated, The traditional method of determining the phase from a
symmetric low resolution portion of the spectrum is expanded into three steps: phase measurement

from an intcrmcdiatc  resolution symmetric portion of the intcrfcrogram,  phase discrimination based
on signal-to-noise considerations in the amplitude spectrum, and phase smoothing using least square

fitting to a polynomial expression. The effect of this method of phase determination is evaluated by
comparing several transforms of overlapping spectra, and the dcpcndancc  on resolution in the phase
determination, discriminator, and order of polynomial arc cvduatcd numerically. The improvement

in wavcnumbcr  calibration between overlapping spectra is very significant and rcprcscnts  an important
step in obtaining consistent and reproducible secondary standard line positions,
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IX. lhble  I.ist and Figure Captions

1. ‘Ihble 1. RMS phase error vs. discriminator

2. Tiblc 2, RMS Phase Error vs. Polynomial Order

3. Figure 1. An example of an unequal-sided intcrferogram  and the apodisation function used to

partition the spectrum into real and imaginary components: the resulting instrumental Iinc shape
will have a symmetric sine function real part and an antisymmctric  cosine function imaginary part.

4. Figure 2. Construction of the real and imaginary components of the instrun~cntaI  line shape func-

tion for a one-sided interfcrogram  rccordcd with a Fourier transform spcctromctcr:  each plot is
a three dimensional rcprcscntation  of a complex function in either the spectral or inlcrferogram

domain (note the divergence of the tick marks and the axes is a result of the perspective used by

the plotting package). (a) Symmetric component of interferogram apodisation function, (b) real,
even instrumental line shape func[ion  (Fourier transform of (a), (c) antisymmctric component of

interfcrogram  apodisation  function, (d) imaginary, odd instrumental line shape function (Fourier
transform of (c), (c) asymmctic  intcrfcrogram apodisation  function (sum of (a) and (c)) for a one-
sidcd intcrfcrogram,  (f) complex instrumental line shape (Fourier transform of (c), and vector sum
of(b) and (d)) – notice that if (c) is invctlcd,  (d) is also inverted, and consequently the handedness
of (f) will bc rcvcrscd.

5. Figure 3. ~pical  low resolution (M 92 points) amplitude (a) and phase (b) spcetra emission spectra

of a Fc-Ar hollow cathode lamp. The phase spectrum is a WC1l  defined, smooth function when

the signal-to-noise ratio in the amplitude spectrum is nonzcro,  and in regions where the spectral
intensity is low the phase determination is noisy. If the same spectra were measured with a typical
number of points (128-256), then the phase spectra from the strong lines would bc averaged into

other regions. corrcctcd  with low resolution phase spectra.

6, Figure 4. ~dvcnumbcr  ditTcrcnccs  for two overlapping spectra corrcctcd  with low resolution phase
spcclra.

7. Figure 5. Phase differences bctwccn phase spectrum estimates using 81920,40960,20480, and4192
samples.

8. Figure 6. Phase error at 20000 cm-1 as a function of apodisation  width.

9. Figure 7. RMS Phase error: (a) as a function of discriminator magnitude, (b) as a function of the
order of the polynomial.”



10. Figure 8. The phase diffcrcncc bctwccn the low resolution phase spectrum and the least-square
phase spectrum.

11. Figure 9. Wmwnumhcr  diffcrcnc~s  for Iwo overlapping spcclra corrccmd with Icast squares phase
spcct ra.

12. Figure 10. Wtwcnumbcr  ditTcrcnccs  resulting from a Ritz tcsl  of several R] lines.



Tahlc 1: RMS phnse error vs. discriminator

Discriminator Sciting RMS Phase Error (mrad) Number oj l,ines in Fit

0.3 0.025 23

0.1 0.057 88

0.03 0.097 220

0.01 0.179 476

0.003 0.450 1076

0.001 0.800 2263

%rblc of RMS phase error as a function of the amplitude of the discriminator setting. A seven Icrm
least square phase polynomial was fitted for each discriminator setting.
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Ihble 2: RMS Phase Nrror vs. Polynomial Order

Number oj Terms in l?olynontial 1(MS Phase Error (mrad)

2 57.0

3 20.0

4 3.9

5 1.85

6 1,80

7 1.78

8 1.76

7hblc of RMS phase error versus number of Icrms in the Icast square phase polynomial with a 3%

discriminator cutoff. An 80000 sample intcrfcrogram  was transformed and 220 spectral lines were used
in the fit.
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Unequal-sided intcrfcrogram (1:4 asymmch-y)
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F@urc J. Apodisalkm funclkm and intcrfcrogram before (top) and after apodkalion  (bot(om).
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